Software Development (SD) is remarkably dynamic and is critically dependent on the knowledge acquired by the project's software developers as the project progresses. Software developers need to understand large amounts of information related to the tasks at hand. This information (context) is often not explicit, as it can be lost in large documentation repositories, a team member's brain, or beyond their cognitive memory capacity. These contexts include tool features, integration strategies, data structures, code syntax, approaches to tasks, project definitions, and even implicit or tacit contexts, which add significant complexity to the SD process. Current software development practices still lack sufficient techniques using the existing SD execution information and context to provide developers with relevant process guidance, augmenting their capacity to do their job using available applicable information. This paper presents ongoing and future research on an approach to support conversational agent-based knowledge-augmented software development. Developers benefit by receiving recommendations about task-related information and workflows they need to execute. This work advances human-computer interaction patterns in workflow engines, from graphical user interfaces to conversational patterns in software engineering.
翻译:软件开发(SD)非常动态,且在项目软件开发人员随着项目进展所获得的知识方面具有至关重要的依赖性。软件开发人员需要了解与任务相关的大量信息。这些信息(上下文)通常不是显式的,因为它们可能散布在大量文档库、团队成员的脑海中,或者超出了他们的认知记忆能力。这些上下文包括工具功能、集成策略、数据结构、代码语法、任务方法、项目定义,甚至还有一些含蓄或隐性上下文,这些因素都给SD过程增加了显著的复杂性。目前,当前的软件开发实践仍然缺乏足够的技术,利用现有SD执行信息和上下文,为开发人员提供相关的过程指导,增强他们使用可用的适用信息完成任务的能力。本文介绍了一种支持基于对话代理的知识增强软件开发的方法的正在进行和未来研究。开发人员可以通过接收与任务相关的信息和工作流程的建议来从中获益。这项工作将在软件工程中推进人机交互模式,从图形用户界面进步到对话模式。