De Berg et al. in [SICOMP 2020] gave an algorithmic framework for subexponential algorithms on geometric graphs with tight (up to ETH) running times. This framework is based on dynamic programming on graphs of weighted treewidth resulting in algorithms that use super-polynomial space. We introduce the notion of weighted treedepth and use it to refine the framework of de Berg et al. for obtaining polynomial space (with tight running times) on geometric graphs. As a result, we prove that for any fixed dimension $d \ge 2$ on intersection graphs of similarly-sized fat objects many well-known graph problems including Independent Set, $r$-Dominating Set for constant $r$, Cycle Cover, Hamiltonian Cycle, Hamiltonian Path, Steiner Tree, Connected Vertex Cover, Feedback Vertex Set, and (Connected) Odd Cycle Transversal are solvable in time $2^{O(n^{1-1/d})}$ and within polynomial space.
翻译:De Berg等人在[SICOMP 2020] 中给出了在紧凑(直到ETH)运行时间的几何图形上的亚爆炸算法框架。这个框架基于在加权树边图上的动态编程,从而产生使用超极表空间的算法。我们引入了加权树深度概念,并用它来完善de Berg等人的框架,以便在几何图上获得多数值空间(运行时间紧)。结果,我们证明,在类似规模脂肪物体交叉图上的任何固定尺寸,无论美元或2美元,许多众所周知的图表问题,包括独立集、固定美元美元定额、周期封面、汉密尔顿周期、汉密尔顿路径、施泰纳树、连接的Vertex覆盖、反馈Vertex设置和(连接)奇周期转折器在时间 $ ⁇ (n ⁇ 1-/d}和多球空间内都是可溶解的。