Wireless local area networks (WLANs) empowered by IEEE 802.11 (WiFi) hold a dominant position in providing Internet access thanks to their freedom of deployment and configuration as well as affordable and highly interoperable devices. The WiFi community is currently deploying WiFi 6 and developing WiFi 7, which will bring higher data rates, better multi-user and multi-AP support, and, most importantly, improved configuration flexibility. These technical innovations, including the plethora of configuration parameters, are making next-generation WLANs exceedingly complex as the dependencies between parameters and their joint optimization usually have a non-linear impact on network performance. The complexity is further increased in the case of dense deployments and coexistence in shared bands. While classic optimization approaches fail in such conditions, machine learning (ML) is well known for being able to handle complexity. Much research has been published on using ML to improve WiFi performance and solutions are slowly being adopted in existing deployments. In this survey, we adopt a structured approach to describing the various areas where WiFi can be enhanced using ML. To this end, we analyze over 200 papers in the field providing readers with an overview of the main trends. Based on this review, we identify both open challenges in each WiFi performance area as well as general future research directions.


翻译:由IEEE 802.11(WiFi)授权的无线局域网(WLANs)在提供因特网接入方面占据主导地位,因为其部署和配置自由以及负担得起和高互操作装置。WiFi社区目前正在部署WiFi 6和开发WiFi 7,这将带来更高的数据率、更好的多用户和多用户支持,而且最重要的是,将改进配置灵活性。这些技术创新,包括配置参数过多,正在使下一代WiFi网变得极为复杂,因为参数及其联合优化之间的依赖性通常对网络性能产生非线性影响。在共用带密集部署和共存的情况下,其复杂性进一步增大。虽然经典的优化方法在这类条件下失败,但机器学习(ML)为人所熟知,因为能够处理复杂性。关于使用ML来改进WiFi的绩效和解决方案的大量研究正在缓慢地得到采用。在本次调查中,我们采取了一种结构化的方法来描述可使用ML加强WiFi的各个领域。为此目的,我们分析外地200多份文件,在提供未来主要业绩趋势的公开概览。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】Web应用安全,331页pdf
专知会员服务
23+阅读 · 2020年10月24日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
0+阅读 · 2021年10月28日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】Web应用安全,331页pdf
专知会员服务
23+阅读 · 2020年10月24日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Top
微信扫码咨询专知VIP会员