We address the problem of recovering a probability measure P over $\R^n$ (e.g. its density $f_P$ if one exists) knowing the associated multivariate spatial rank $R_P$ only. It has been shown in Koltchinski (1997) that multivariate spatial ranks characterize probability measures. We strengthen this result by explictly recovering $f_P$ by $R_P$ in the form of a (potentially fractional) partial differential equation $f_P = \LL_n (R_P)$, where $\LL_n$ is a differential operator given in closed form that depends on $n$. When $P$ admits no density, we further show that the equality $P=\LL_n (R_P)$ still holds in the sense of distributions (i.e. generalized functions). We throughly investigate the regularity properties of spatial ranks and use the PDE we established to give qualitative results on depths contours and regions. %We illustrate the relation between $f_P$ and $R_P$ on a few examples in dimension $2$ and $3$. We study the local properties of the operator $\LL_n$ and show that it is non-local when $n$ is even. We conclude the paper with a partial counterpart to the non-localizability in even dimensions.
翻译:我们解决了在知道相关多变空间等级为$R_P美元的情况下回收超过1美元(例如,如果存在的话,其密度为$_P美元)的概率计量概率的问题。 Koltchinski(1997年)显示,多变空间等级是概率计量的特征。我们通过以(可能的分数)部分方程式形式,以(f_P =\LLL_n(R_P美元)的形式,以(可能的分数)部分方程式形式,以美元=美元=美元=美元=LL_N(R_P美元)的形式,以封闭形式提供以美元为单位的差价操作员。当美元表示没有密度时,我们进一步显示,在分布意义上(即一般功能),美元的平等性能仍然是美元。我们通过调查空间等级的正常性特性,并使用我们建立的PDE在深度和深度中给出质量结果。%我们用美元与美元(甚至美元)的美元为美元差异操作员关系,在一个方维值为2美元和3美元的当地面纸上,我们用当地货币中以当地货币表示其局部价值为部分。