In this study, we demonstrate how empirical game-theoretical analysis (EGTA) can be applied to mean field games (MFGs). Since the utility function of a MFG is not generally linear in the distribution of the population, it is impractical to define an explicit payoff matrix for empirical game analysis as usual. Instead, we utilize query-based approaches without keeping an explicit payoff matrix. We propose an iterative EGTA framework to learn Nash equilibrium (NE) for MFGs and study the convergence of our algorithm from two aspects: the existence of NE in the empirical MFG and the convergence of iterative EGTA to NE of the full MFG. We test the performance of iterative EGTA in various games and show its superior performance against Fictitious Play under some common assumptions in EGTA. Finally, we discuss the limitations of applying iterative EGTA to MFGs as well as potential future research directions.
翻译:在这项研究中,我们展示了如何将实证游戏理论分析(EGTA)应用到平均野外游戏(MFGs)中。由于MFG的实用功能在人口分布上一般不是线性,因此,像往常一样为实证游戏分析界定一个明确的回报矩阵是不切实际的。相反,我们使用基于询问的方法而不保留明确的回报矩阵。我们提议了一个反复的EGTA框架来学习MFGs的纳什平衡(NE),并从两个方面研究我们的算法的趋同性:在实证MFG中存在NE,以及将整个MFGs的迭接EGTA与NE合并。我们测试了迭接的EGTA在各种游戏中的性能,并展示了它在EGTA的一些共同假设下与Fictitious Play的优异性表现。最后,我们讨论了对MFGGs应用反复的EGTA的局限性以及潜在的未来研究方向。