Existing Multiple Object Tracking (MOT) methods design complex architectures for better tracking performance. However, without a proper organization of input information, they still fail to perform tracking robustly and suffer from frequent identity switches. In this paper, we propose two novel methods together with a simple online Message Passing Network (MPN) to address these limitations. First, we explore different integration methods for the graph node and edge embeddings and put forward a new IoU (Intersection over Union) guided function, which improves long term tracking and handles identity switches. Second, we introduce a hierarchical sampling strategy to construct sparser graphs which allows to focus the training on more difficult samples. Experimental results demonstrate that a simple online MPN with these two contributions can perform better than many state-of-the-art methods. In addition, our association method generalizes well and can also improve the results of private detection based methods.
翻译:现有多物体跟踪(MOT)方法设计复杂的结构来更好地跟踪性能。 但是,没有适当的投入信息组织,它们仍然无法进行强有力的跟踪,而且经常受到身份开关的影响。 在本文中,我们提出了两种新颖的方法以及简单的在线信息传递网络(MPN)来应对这些限制。首先,我们探索图形节点和边缘嵌入的不同整合方法,并提出了新的IOU(Intercrection over Union)指导功能,这改善了长期跟踪和身份开关的处理。第二,我们引入了等级抽样战略来构建稀疏图,以便能够将培训的重点放在更困难的样本上。实验结果表明,一个简单的在线 MPN(MPN)加上这两种贡献可以比许多最先进的方法效果更好。此外,我们的联系方法非常普及,还可以改进基于私人检测方法的结果。