The first known case of Coronavirus disease 2019 (COVID-19) was identified in December 2019. It has spread worldwide, leading to an ongoing pandemic, imposed restrictions and costs to many countries. Predicting the number of new cases and deaths during this period can be a useful step in predicting the costs and facilities required in the future. The purpose of this study is to predict new cases and deaths rate one, three and seven-day ahead during the next 100 days. The motivation for predicting every n days (instead of just every day) is the investigation of the possibility of computational cost reduction and still achieving reasonable performance. Such a scenario may be encountered real-time forecasting of time series. Six different deep learning methods are examined on the data adopted from the WHO website. Three methods are LSTM, Convolutional LSTM, and GRU. The bidirectional extension is then considered for each method to forecast the rate of new cases and new deaths in Australia and Iran countries.


翻译:第一个已知的Corona病毒疾病2019(COVID-19)病例于2019年12月被确定为2019年12月,已在全世界蔓延,导致流行病持续不断,对许多国家施加限制和费用。预测这一时期的新病例和死亡人数可能是预测今后所需的费用和设施的一个有益步骤。这项研究的目的是预测今后100天内今后1天、3天和7天的新病例和死亡率。预测每天(而不仅仅是每天)的动机是调查降低计算成本的可能性,仍然实现合理的绩效。这种情景可能遇到实时预测时间序列的情况。在世卫组织网站上采用的数据中审查了六种不同的深层次学习方法。三种方法是LSTM、Cultural LSTM和GRU。然后考虑对澳大利亚和伊朗新病例和新死亡人数预测的每一种方法进行双向扩展。然后考虑对两种方法进行双向扩展。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
已删除
将门创投
8+阅读 · 2019年3月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Time Series Forecasting Using Manifold Learning
Arxiv
0+阅读 · 2021年10月7日
Arxiv
0+阅读 · 2021年10月7日
Arxiv
0+阅读 · 2021年10月6日
Arxiv
8+阅读 · 2020年10月7日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
8+阅读 · 2019年3月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员