One of the most pressing problems in modern analysis is the study of the growth rate of the norms of all possible matrix products $\|A_{i_{n}}\cdots A_{i_{0}}\|$ with factors from a set of matrices $\mathscr{A}$. So far, only for a relatively small number of classes of matrices $\mathscr{A}$ has it been possible to rigorously describe the sequences of matrices $\{A_{i_{n}}\}$ that guarantee the maximal growth rate of the corresponding norms. Moreover, in almost all theoretically studied cases, the index sequences $\{i_{n}\}$ of matrices maximizing the norms of the corresponding matrix products turned out to be periodic or so-called Sturmian sequences, which entails a whole set of "good" properties of the sequences $\{A_{i_{n}}\}$, in particular the existence of a limiting frequency of occurrence of each matrix factor $A_{i}\in\mathscr{A}$ in them. The paper determines a class of $2\times 2$ matrices consisting of two matrices similar to rotations of the plane in which the sequence $\{A_{i_{n}}\}$ maximizing the growth rate of the norms $\|A_{i_{n}}\cdots A_{i_{0}}\|$ is not Sturmian. All considerations are based on numerical modeling and cannot be considered mathematically rigorous in this part. Rather, they should be interpreted as a set of questions for further comprehensive theoretical analysis.


翻译:现代分析中最紧迫的问题之一是研究所有可能的矩阵产品“A”和“A”和“A”的增长率。到目前为止,只有数量相对较少的“马斯克勒”和“A”类,才可能严格描述保证相应标准最大增长率的矩阵序列。此外,在几乎所有理论上研究的案例中,将相应的矩阵产品的全面规范最大化为定期或所谓的“Sturmian”序列的指数序列(美元)和“马”类相对较少的类别(美元)的指数序列(美元)和“美元”的指数序列(美元)的增长率。 本文确定了一种2倍的矩阵(美元),组成两个类似于“亚”和“美元”系列(美元)的模型(美元)的模型(美元)和“美元”数级(美元)的模型(美元)值(美元)值(美元)值(美元)值(美元)值(美元)值(美元)值(美元)的指数序列(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
76+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
tensorflow LSTM + CTC实现端到端OCR
机器学习研究会
26+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Improved Compression of the Okamura-Seymour Metric
Arxiv
0+阅读 · 2022年2月10日
Arxiv
0+阅读 · 2022年2月9日
The Approximate Degree of Bipartite Perfect Matching
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
tensorflow LSTM + CTC实现端到端OCR
机器学习研究会
26+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员