Camera-based contactless photoplethysmography refers to a set of popular techniques for contactless physiological measurement. The current state-of-the-art neural models are typically trained in a supervised manner using videos accompanied by gold standard physiological measurements. However, they often generalize poorly out-of-domain examples (i.e., videos that are unlike those in the training set). Personalizing models can help improve model generalizability, but many personalization techniques still require some gold standard data. To help alleviate this dependency, in this paper, we present a novel mobile sensing system called MobilePhys, the first mobile personalized remote physiological sensing system, that leverages both front and rear cameras on a smartphone to generate high-quality self-supervised labels for training personalized contactless camera-based PPG models. To evaluate the robustness of MobilePhys, we conducted a user study with 39 participants who completed a set of tasks under different mobile devices, lighting conditions/intensities, motion tasks, and skin types. Our results show that MobilePhys significantly outperforms the state-of-the-art on-device supervised training and few-shot adaptation methods. Through extensive user studies, we further examine how does MobilePhys perform in complex real-world settings. We envision that calibrated or personalized camera-based contactless PPG models generated from our proposed dual-camera mobile sensing system will open the door for numerous future applications such as smart mirrors, fitness and mobile health applications.


翻译:以相机为基础的不触摸光球成像法是指一套不触碰生理测量的流行技术。目前最先进的神经模型通常使用配有金质标准生理测量的视频进行监管式的培训。然而,它们往往笼统地概括出一些个人化的外部实例(即与培训成套材料不同的视频)。个性化模型可以帮助改进模型的通用性,但许多个性化技术仍然需要一些金质标准数据。为了帮助减轻这种依赖性,我们在本文件中展示了一个新的移动式遥感系统,即第一个移动式个性化远程生理感测系统,在智能手机上使用前和后两个摄像头来生成高品质的自我监督标签,用于培训个性化的无接触相机 PPPG模型。为了评估移动Phys的稳健性,我们进行了一项用户研究,在不同的移动设备、照明条件/强度、运动任务和皮肤类型下完成了一系列任务。我们的结果显示,移动式Phopphys 大大地超越了我们内部的系统-镜面智能智能智能智能智能智能应用系统, 将进行大量的移动化的移动式计算机化研究。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员