Physical rehabilitation programs frequently begin with a brief stay in the hospital and continue with home-based rehabilitation. Lack of feedback on exercise correctness is a significant issue in home-based rehabilitation. Automated movement quality assessment (MQA) using skeletal movement data (hereafter referred to as skeletal data) collected via depth imaging devices can assist with home-based rehabilitation by providing the necessary quantitative feedback. This paper aims to use recent advances in deep learning to address the problem of MQA. Movement quality score generation is an essential component of MQA. We propose three novel skeletal data augmentation schemes. We show that using the proposed augmentations for generating movement quality scores result in significant performance boosts over existing methods. Finally, we propose a novel transformer based architecture for MQA. Four novel feature extractors are proposed and studied that allow the transformer network to operate on skeletal data. We show that adding the attention mechanism in the design of the proposed feature extractor allows the transformer network to pay attention to specific body parts that make a significant contribution towards executing a movement. We report an improvement in movement quality score prediction of 12% on UI-PRMD dataset and 21% on KIMORE dataset compared to the existing methods.
翻译:利用通过深层成像装置收集的骨骼运动数据(以下称为骨骼数据)进行自动化运动质量评估(MQA),通过提供必要的定量反馈,有助于家庭康复。本文件的目的是利用在深层学习方面的最新进展,解决MQA问题。运动质量评分生成是MQA的一个基本组成部分。我们建议了三个新的骨骼数据增强计划。我们指出,利用拟议的增强来产生运动质量评分,将大大提升现有方法的性能。最后,我们提出了一个新的基于骨骼运动的变异器结构(以下称为骨骼数据)。提出和研究四个新的特性提取器,使变异器网络能够操作骨骼数据。我们表示,在设计拟议的地貌提取器时增加关注机制,使变异器网络能够关注对执行运动作出重大贡献的具体身体部分。我们报告说,在IU-PRMD数据设置和KIMO数据设置方面,改进了12%的移动质量评分预测,在现有的数据设置上,为21 %。