Network slicing is a critical technique for 5G communications that covers radio access network (RAN), edge, transport and core slicing.The evolving network architecture requires the orchestration of multiple network resources such as radio and cache resources. In recent years, machine learning (ML) techniques have been widely applied for network management. However, most existing works do not take advantage of the knowledge transfer capability in ML. In this paper, we propose a deep transfer reinforcement learning (DTRL) scheme for joint radio and cache resource allocation to serve 5G RAN slicing. We first define a hierarchical architecture for joint resource allocation. Then we propose two DTRL algorithms: Q-value-based deep transfer reinforcement learning (QDTRL) and action selection-based deep transfer reinforcement learning (ADTRL). In the proposed schemes, learner agents utilize expert agents' knowledge to improve their performance on current tasks. The proposed algorithms are compared with both the model-free exploration bonus deep Q-learning (EB-DQN) and the model-based priority proportional fairness and time-to-live (PPF-TTL) algorithms. Compared with EB-DQN, our proposed DTRL-based method presents 21.4% lower delay for Ultra Reliable Low Latency Communications (URLLC) slice and 22.4% higher throughput for enhanced Mobile Broad Band (eMBB) slice, while achieving significantly faster convergence than EB-DQN. Moreover, 40.8% lower URLLC delay and 59.8% higher eMBB throughput are observed with respect to PPF-TTL.


翻译:网络剪切是5G通信的关键技术,包括无线电接入网络(RAN)、边缘、运输和核心剪切。 正在演变的网络结构要求协调无线电和缓存资源等多种网络资源。 近年来,机器学习(ML)技术被广泛应用于网络管理。 然而,大多数现有工程没有利用ML的知识转让能力。 在本文件中,我们提议了一个深度传输强化学习(DTRL)计划,用于联合无线电和缓存资源分配,为5GRN的断层服务。我们首先确定了联合资源分配的等级结构。 然后,我们提出了两个DTRL算法:基于Q价值的深度传输强化学习(QDTRL)和基于行动的选择深度传输强化学习(ADTRL)。在拟议的方案中,学习者利用专家的知识来提高当前任务的业绩。 拟议的算法与无模型勘探奖金的深层Q学习(EB-DQN平流)和基于模型的更高级的平价公平性和时间定位(PPF-TL)之间的结构。 与EF-LMUL-L-L-L-C的大幅升级方法相比,在21年的透明-LLLLLLULLLLLULUL值中,在达到更高通信中的升级。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
66+阅读 · 2022年4月13日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员