We present a unified method, termed Unicorn, that can simultaneously solve four tracking problems (SOT, MOT, VOS, MOTS) with a single network using the same model parameters. Due to the fragmented definitions of the object tracking problem itself, most existing trackers are developed to address a single or part of tasks and overspecialize on the characteristics of specific tasks. By contrast, Unicorn provides a unified solution, adopting the same input, backbone, embedding, and head across all tracking tasks. For the first time, we accomplish the great unification of the tracking network architecture and learning paradigm. Unicorn performs on-par or better than its task-specific counterparts in 8 tracking datasets, including LaSOT, TrackingNet, MOT17, BDD100K, DAVIS16-17, MOTS20, and BDD100K MOTS. We believe that Unicorn will serve as a solid step towards the general vision model. Code is available at https://github.com/MasterBin-IIAU/Unicorn.


翻译:我们提出了一个统一的方法,称为 " 独角兽 ",它可以同时用相同的模型参数解决四个跟踪问题(SOT、MOT、VOS、MOTS),使用一个单一的网络解决四个跟踪问题。由于对物体跟踪问题本身的定义零散,大多数现有跟踪器是用来处理一个或一个部分任务,并且对具体任务的特点过于专门化。相反,独角兽则提供统一的解决办法,在所有跟踪任务中采用同样的输入、主干、嵌入和头等。我们第一次实现了跟踪网络结构和学习模式的巨大统一。独角兽在8个跟踪数据集(包括LaSOT、跟踪网、MOT17、BDD100K、DAVIS16-17、MOTS20和BDD100K MATS)中,在8个跟踪数据集(包括LaSOT、跟踪网、MOT17、BDD100K、DTS20和BDD100K MOTS)中,在8个跟踪数据集中的表现优异或优于其具体任务对应的对等。我们认为独角兽。我们认为,独角兽将作为通观模型的坚实步骤。可在http://gitub.com/MasterBin-II-IIAU/U/Unicornc.

0
下载
关闭预览

相关内容

标跟踪是指:给出目标在跟踪视频第一帧中的初始状态(如位置,尺寸),自动估计目标物体在后续帧中的状态。 目标跟踪分为单目标跟踪和多目标跟踪。 人眼可以比较轻松的在一段时间内跟住某个特定目标。但是对机器而言,这一任务并不简单,尤其是跟踪过程中会出现目标发生剧烈形变、被其他目标遮挡或出现相似物体干扰等等各种复杂的情况。过去几十年以来,目标跟踪的研究取得了长足的发展,尤其是各种机器学习算法被引入以来,目标跟踪算法呈现百花齐放的态势。2013年以来,深度学习方法开始在目标跟踪领域展露头脚,并逐渐在性能上超越传统方法,取得巨大的突破。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
17+阅读 · 2020年9月6日
专知会员服务
109+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月27日
Arxiv
0+阅读 · 2022年9月27日
Arxiv
0+阅读 · 2022年9月23日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
32+阅读 · 2021年3月8日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
57+阅读 · 2019年7月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
相关论文
Arxiv
0+阅读 · 2022年9月27日
Arxiv
0+阅读 · 2022年9月27日
Arxiv
0+阅读 · 2022年9月23日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
32+阅读 · 2021年3月8日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
57+阅读 · 2019年7月31日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员