This study follows many previous approaches to multi-object tracking (MOT) that model the problem using graph-based data structures, and adapts this formulation to make it amenable to modern neural networks. Our main contributions in this work are the creation of a framework based on dynamic undirected graphs that represent the data association problem over multiple timesteps, and a message passing graph neural network (GNN) that operates on these graphs to produce the desired likelihood for every association therein. We further provide solutions and propositions for the computational problems that need to be addressed to create a memory-efficient, real-time, online algorithm that can reason over multiple timesteps, correct previous mistakes, update beliefs, possess long-term memory, and handle missed/false detections. In addition to this, our framework provides flexibility in the choice of temporal window sizes to operate on and the losses used for training. In essence, this study provides a framework for any kind of graph based neural network to be trained using conventional techniques from supervised learning, and then use these trained models to infer on new sequences in an online, real-time, computationally tractable manner. To demonstrate the efficacy and robustness of our approach, we only use the 2D box location and object category to construct the descriptor for each object instance. Despite this, our model performs on par with state-of-the-art approaches that make use of multiple hand-crafted and/or learned features. Experiments, qualitative examples and competitive results on popular MOT benchmarks for autonomous driving demonstrate the promise and uniqueness of the proposed approach.


翻译:这项研究遵循许多先前的多点跟踪方法,用图表数据结构来模拟问题,并调整这一配方,使之适合现代神经网络。我们在这方面工作的主要贡献是建立一个基于动态非方向图的框架,它代表了数据关联问题,跨多个时间步骤,以及一个信息传递图神经网络(GNN),它以这些图为基础运行,为其中每一个关联创造理想的可能性。我们进一步为计算问题提供了解决方案和提议,这些问题需要解决,以便产生一个记忆高效的、实时的、在线的、能够解释多重时间步骤的计算方法,纠正以往的错误,更新信念,拥有长期记忆,并处理错失/错误的检测。此外,我们的框架为选择运行时间窗口大小和用于培训的损失提供了灵活性。本研究为任何类型的基于图表的神经网络提供了一个框架,以便利用从监督学习到传统技术的培训,然后使用这些经过培训的独特模型来推导出一个在线、实时、可计算性、可计算性、可计算性、可错觉错觉的轨迹,用以显示我们每个目标、可测的轨迹的轨迹的运行方式。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
1+阅读 · 2021年3月22日
Arxiv
38+阅读 · 2020年12月2日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
5+阅读 · 2018年4月30日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
1+阅读 · 2021年3月22日
Arxiv
38+阅读 · 2020年12月2日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
5+阅读 · 2018年4月30日
Arxiv
8+阅读 · 2018年3月20日
Top
微信扫码咨询专知VIP会员