We consider the task of learning latent community structure from multiple correlated networks. First, we study the problem of learning the latent vertex correspondence between two edge-correlated stochastic block models, focusing on the regime where the average degree is logarithmic in the number of vertices. We derive the precise information-theoretic threshold for exact recovery: above the threshold there exists an estimator that outputs the true correspondence with probability close to 1, while below it no estimator can recover the true correspondence with probability bounded away from 0. As an application of our results, we show how one can exactly recover the latent communities using multiple correlated graphs in parameter regimes where it is information-theoretically impossible to do so using just a single graph.
翻译:我们考虑从多个相关网络中学习潜在社区结构的任务。 首先,我们研究了解两个边缘相联的随机区块模型之间的潜在顶点对应问题, 重点是平均度对脊椎数进行对数的制度。 我们得出精确的信息理论阈值, 精确恢复: 在阈值上方有一个估计符, 显示真实通信的概率接近1, 而低于此值时, 估计器无法从 0 中恢复真实通信的概率。 作为我们结果的应用, 我们用参数系统中的多个关联图来显示, 在参数系统中, 在信息理论上不可能这样做的情况下, 如何用一个单一的图表来完全恢复潜在社区 。