Secure multi-party machine learning allows several parties to build a model on their pooled data to increase utility while not explicitly sharing data with each other. We show that such multi-party computation can cause leakage of global dataset properties between the parties even when parties obtain only black-box access to the final model. In particular, a ``curious'' party can infer the distribution of sensitive attributes in other parties' data with high accuracy. This raises concerns regarding the confidentiality of properties pertaining to the whole dataset as opposed to individual data records. We show that our attack can leak population-level properties in datasets of different types, including tabular, text, and graph data. To understand and measure the source of leakage, we consider several models of correlation between a sensitive attribute and the rest of the data. Using multiple machine learning models, we show that leakage occurs even if the sensitive attribute is not included in the training data and has a low correlation with other attributes or the target variable.


翻译:安全的多党机器学习使几个缔约方能够在其集合数据的基础上建立一个模型,以提高其效用,同时又不相互明确分享数据。我们表明,这种多党计算即使当事方只获得最后模型的黑匣子访问权,也可能造成缔约方之间全球数据集属性的泄漏。特别是,“可疑”的一方可以非常精确地推断其他缔约方数据中敏感属性的分布。这引起了对整个数据集相关属性的保密性的关注,而不是个人数据记录。我们表明,我们的攻击可能泄漏不同类型数据集中的人口级属性,包括表格、文本和图表数据。为理解和测量渗漏源,我们考虑了敏感属性与数据其余部分之间的若干关联模式。我们使用多机学习模型表明,即使敏感属性没有包括在培训数据中,而且与其他属性或目标变量的相关性较低,也会发生渗漏。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月19日
Multi-Center Federated Learning
Arxiv
0+阅读 · 2021年8月19日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
0+阅读 · 2021年8月18日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
6+阅读 · 2018年12月10日
VIP会员
相关VIP内容
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年8月19日
Multi-Center Federated Learning
Arxiv
0+阅读 · 2021年8月19日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
0+阅读 · 2021年8月18日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
6+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员