How effectively do we adhere to nudges and interventions that help us control our online browsing habits? If we have a temporary lapse and disable the behavior change system, do we later resume our adherence, or has the dam broken? In this paper, we investigate these questions through log analyses of 8,000+ users on HabitLab, a behavior change platform that helps users reduce their time online. We find that, while users typically begin with high-challenge interventions, over time they allow themselves to slip into easier and easier interventions. Despite this, many still expect to return to the harder interventions imminently: they repeatedly choose to be asked to change difficulty again on the next visit, declining to have the system save their preference for easy interventions.


翻译:我们如何有效地坚持有助于我们控制在线浏览习惯的试探和干预?如果我们暂时失效并禁用行为改变系统,我们是否以后恢复遵守,或者水坝破裂?在本文中,我们通过对Habitlab上8000+用户的日志分析来调查这些问题,HabitLab上的行为改变平台帮助用户缩短在线时间。我们发现,虽然用户通常从挑战性强的干预开始,但随着时间的流逝,他们还是可以滑入更容易和更容易的干预中。尽管如此,许多人仍然期望很快回到更困难的干预中来:他们一再选择在下次访问时再次被要求改变困难,拒绝让系统避免他们选择简单干预。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年7月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年3月21日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年7月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员