With the increase of research in self-adaptive systems, there is a need to better understand the way research contributions are evaluated. Such insights will support researchers to better compare new findings when developing new knowledge for the community. However, so far there is no clear overview of how evaluations are performed in self-adaptive systems. To address this gap, we conduct a mapping study. The study focuses on experimental evaluations published in the last decade at the prime venue of research in software engineering for self-adaptive systems -- the International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). Results point out that specifics of self-adaptive systems require special attention in the experimental process, including the distinction of the managing system (i.e., the target of evaluation) and the managed system, the presence of uncertainties that affect the system behavior and hence need to be taken into account in data analysis, and the potential of managed systems to be reused across experiments, beyond replications. To conclude, we offer a set of suggestions derived from our study that can be used as input to enhance future experiments in self-adaptive systems.


翻译:随着自适应系统研究的增加,有必要更好地了解研究贡献的评价方式,这种洞察力将有助于研究人员在为社区开发新知识时更好地比较新的发现,然而,迄今为止,对于如何在自适应系统中进行评价,还没有清楚的概览。为了弥补这一差距,我们进行了一项绘图研究。这项研究的重点是过去十年在自适应系统软件工程研究的主要地点发表的实验性评价 -- -- 适应和自我管理系统软件工程国际专题讨论会。结果指出,自适应系统的具体特点需要在试验过程中得到特别注意,包括管理系统(即评价目标)和管理系统的区别、影响系统行为并因此需要在数据分析中加以考虑的不确定性的存在,以及管理下系统除复制外可在各种试验中再利用的潜力。最后,我们提出从我们的研究中得出的一系列建议,可以用来作为加强自适应系统未来试验的投入。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
35+阅读 · 2019年11月7日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关VIP内容
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Top
微信扫码咨询专知VIP会员