Petri games are a multi-player game model for the synthesis of distributed systems with multiple concurrent processes based on Petri nets. The processes are the players in the game represented by the token of the net. The players are divided into two teams: the controllable system and the uncontrollable environment. An individual controller is synthesized for each process based only on their locally available causality-based information. For one environment player and a bounded number of system players, the problem of solving Petri games can be reduced to that of solving B\"uchi games. High-level Petri games are a concise representation of ordinary Petri games. Symmetries, derived from a high-level representation, can be exploited to significantly reduce the state space in the corresponding B\"uchi game. We present a new construction for solving high-level Petri games. It involves the definition of a unique, canonical representation of the reduced B\"uchi game. This allows us to translate a strategy in the B\"uchi game directly into a strategy in the Petri game. An implementation applied on six structurally different benchmark families shows in almost all cases a performance increase for larger state spaces.
翻译:Petri 游戏是将分布式系统与基于 Petri 网的多个同时进程合成在一起的多玩家游戏模型。 高级 Petri 游戏是普通 Petri 游戏的简明表现形式。 由高端代表制衍生出来的配对可以大大缩小相应的 B\\ uchi 游戏中的国家空间。 我们为每个进程合成了一个个人控制器, 仅基于其本地可获得的因果关系信息。 对于一个环境玩家和众多的系统玩家来说, 解决 Petri 游戏的问题可以简化为解决 B\" uchi 游戏。 高级 Petri 游戏是普通 Petri 游戏的简明表现形式。 由高端代表制生成的配对可以用来大大缩小相应的 B\\ uchi 游戏中的国家空间。 我们为解决高端Petri 游戏绘制了一个新的构造。 它涉及到一个独特的、 comonic 表达方式的定义。 这使得我们可以将 B\ " uchi uchi 游戏中的策略直接转化为 Petri 游戏的战略。 适用于六个结构上不同的基准家庭, 在几乎所有情况下都显示更大的国家空间的性表现。