Robot navigation with deep reinforcement learning (RL) achieves higher performance and performs well under complex environment. Meanwhile, the interpretation of the decision-making of deep RL models becomes a critical problem for more safety and reliability of autonomous robots. In this paper, we propose a visual explanation method based on an attention branch for deep RL models. We connect attention branch with pre-trained deep RL model and the attention branch is trained by using the selected action by the trained deep RL model as a correct label in a supervised learning manner. Because the attention branch is trained to output the same result as the deep RL model, the obtained attention maps are corresponding to the agent action with higher interpretability. Experimental results with robot navigation task show that the proposed method can generate interpretable attention maps for a visual explanation.
翻译:使用深强化学习( RL) 的机器人导航实现更高的性能,并在复杂环境中运行良好。 同时,对深RL模型的决策解释成为自主机器人更安全和可靠性的关键问题。 在本文中,我们提议了一个基于深强化学习模型关注分支的直观解释方法。 我们将关注分支与经过预先训练的深RL模型联系起来,关注分支通过使用经过培训的深RL模型的选定行动作为受监督学习方式的正确标签接受培训。由于关注分支受过培训,其输出结果与深RL模型相同,因此获得的关注地图与具有更高解释性的代理动作相对应。机器人导航任务实验结果显示,拟议方法可以生成可解释的关注地图,用于视觉解释。