Recently, the generality of natural language text has been leveraged to develop transferable recommender systems. The basic idea is to employ pre-trained language model (PLM) to encode item text into item representations. Despite the promising transferability, the binding between item text and item representations might be too tight, leading to potential problems such as over-emphasizing text similarity and exaggerating domain gaps. To address this issue, this paper proposes VQ-Rec, a novel approach to learning Vector-Quantized item representations for transferable sequential Recommender. The major novelty of our approach lies in the new item representation scheme: it first maps item text into a vector of discrete indices (called item code), and then employs these indices to lookup the code embedding table for deriving item representations. Such a scheme can be denoted as "text -> code -> representation". Based on this representation scheme, we further propose an enhanced contrastive pre-training approach, using semi-synthetic and mixed-domain code representations as hard negatives. Furthermore, we design a new cross-domain fine-tuning method based on a differentiable permutation-based network. Extensive experiments conducted on six public benchmarks demonstrate the effectiveness of the proposed approach, in both cross-domain and cross-platform settings.
翻译:最近,自然语言文本的通用性被用来开发可转让建议系统。基本想法是使用经过预先训练的语言模式(PLM)将项目文本编码成项目表示式。尽管项目文本和项目表述式之间的约束力可能过于紧密,但可能过于紧凑,导致过分强调文本相似性和夸大领域差距等潜在问题。为解决这一问题,本文件提出VQ-Rec,这是学习可转让顺序建议器的矢量量化项目表达式的新颖方法。我们方法的主要新颖之处在于新的项目表述法:它首先将项目文本绘制成一个离散指数的矢量(所谓的项目代码),然后使用这些指数来查找项目表达式表达式的代码嵌入表。这种方法可以被理解为“text - > 代码 > 代表制” 。根据这种表述法,我们进一步提出一种强化的对比性培训前方法,即使用半合成和混合式代码表达法作为硬性反面。此外,我们根据一个基于不同公共测试模式的跨系统、跨系统的拟议测试方法设计新的跨部调整方法,根据一个基于不同的公共测试的跨系统模式的跨系统模式。