This work focuses on low-energy collision avoidance and formation maintenance in autonomous swarms of drones. Here, the two main problems are: 1) how to avoid collisions by temporarily breaking the formation, i.e., collision avoidance reformation, and 2) how do such reformation while minimizing the deviation resulting in minimization of the overall time and energy consumption of the drones. To address the first question, we use cellular automata based technique to find an efficient formation that avoids the obstacle while minimizing the time and energy. Concerning the second question, a near-optimal reformation of the swarm after successful collision avoidance is achieved by applying a temperature function reduction technique, originally used in the point set registration process. The goal of the reformation process is to remove the disturbance while minimizing the overall time it takes for the swarm to reach the destination and consequently reducing the energy consumption required by this operation. To measure the degree of formation disturbance due to collision avoidance, deviation of the centroid of the swarm formation is used, inspired by the concept of the center of mass in classical mechanics. Experimental results show the efficiency of the proposed technique, in terms of performance and energy.
翻译:这项工作侧重于避免低能碰撞和在无人驾驶飞机的自主群群群中形成结构。这里,两个主要问题是:(1) 如何通过暂时打破形成过程避免碰撞,即避免碰撞的调整;(2) 如何进行这种调整,同时尽量减少导致尽量减少无人驾驶飞机总体时间和能源消耗的偏差;为处理第一个问题,我们使用基于蜂窝自动成形的技术寻找一种有效的形成方式,避免障碍,同时尽量减少时间和能量;关于第二个问题,在成功避免碰撞之后,通过应用原先在定点登记过程中使用的降低温度功能技术,实现接近最佳的改变。改革进程的目标是消除扰动,同时尽可能缩短到达目的地所需的全部时间,从而减少这种作业所需的能源消耗。为了衡量避免碰撞所造成的形成干扰的程度,在古典机械中质量中心概念的启发下,使用了暖成体形成体的偏差。实验结果显示拟议的技术在性能和能源方面的效率。