Today's computing systems require moving data back-and-forth between computing resources (e.g., CPUs, GPUs, accelerators) and off-chip main memory so that computation can take place on the data. Unfortunately, this data movement is a major bottleneck for system performance and energy consumption. One promising execution paradigm that alleviates the data movement bottleneck in modern and emerging applications is processing-in-memory (PIM), where the cost of data movement to/from main memory is reduced by placing computation capabilities close to memory. Naively employing PIM to accelerate data-intensive workloads can lead to sub-optimal performance due to the many design constraints PIM substrates impose. Therefore, many recent works co-design specialized PIM accelerators and algorithms to improve performance and reduce the energy consumption of (i) applications from various application domains; and (ii) various computing environments, including cloud systems, mobile systems, and edge devices. We showcase the benefits of co-designing algorithms and hardware in a way that efficiently takes advantage of the PIM paradigm for two modern data-intensive applications: (1) machine learning inference models for edge devices and (2) hybrid transactional/analytical processing databases for cloud systems. We follow a two-step approach in our system design. In the first step, we extensively analyze the computation and memory access patterns of each application to gain insights into its hardware/software requirements and major sources of performance and energy bottlenecks in processor-centric systems. In the second step, we leverage the insights from the first step to co-design algorithms and hardware accelerators to enable high-performance and energy-efficient data-centric architectures for each application.


翻译:今天的计算系统需要在计算资源(如CPU、GPU、加速器、加速器)和离芯主内存之间移动数据,以便计算数据。 不幸的是,这一数据移动是系统性能和能源消耗的一个主要瓶颈。一个有希望的执行模式是减少数据流动在现代和新兴应用程序中的瓶颈,即处理模拟(PIM),使计算能力接近记忆,从而降低数据向主内存移动/从主内存移动的成本。利用PIM加速数据密集工作量可以导致亚精度预估性内存性,因为许多设计上的限制。因此,许多最近的工程共同指定了专门的PIM加速器和能源消耗的瓶颈,以改善数据在现代应用领域的性能和能量消耗;以及(二)各种计算机环境,包括云系统、移动系统和边缘装置。我们展示了共同设计算法和硬件的好处,以便首先有效地利用PIM系统性能-直达性能性能,因为PIM的预估性能性能性能,因此,PIM亚精度的次优性能性能性能性能性能性能性能性能性能表现。 因此,我们的两个高级数据-计算系统,学习了两部内极级的精度设计系统,我们两个的精度的精度-级的精度-直径性能-分析系统,我们学习了两部的精度-直径性能-直径性能-直径性能-系统,我们学习了两部的计算系统,学习了两部的能量-直径性能-直径性能-机能-直达性能-机能-直达性能-机能-直达性能-机能-直达性能-机能-机能-机能-直达性能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能-机能

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员