We theoretically analyze the typical learning performance of $\ell_{1}$-regularized linear regression ($\ell_1$-LinR) for Ising model selection using the replica method from statistical mechanics. For typical random regular graphs in the paramagnetic phase, an accurate estimate of the typical sample complexity of $\ell_1$-LinR is obtained. Remarkably, despite the model misspecification, $\ell_1$-LinR is model selection consistent with the same order of sample complexity as $\ell_{1}$-regularized logistic regression ($\ell_1$-LogR), i.e., $M=\mathcal{O}\left(\log N\right)$, where $N$ is the number of variables of the Ising model. Moreover, we provide an efficient method to accurately predict the non-asymptotic behavior of $\ell_1$-LinR for moderate $M, N$, such as precision and recall. Simulations show a fairly good agreement between theoretical predictions and experimental results, even for graphs with many loops, which supports our findings. Although this paper mainly focuses on $\ell_1$-LinR, our method is readily applicable for precisely characterizing the typical learning performances of a wide class of $\ell_{1}$-regularized $M$-estimators including $\ell_1$-LogR and interaction screening.


翻译:我们从理论上分析了用于使用统计机械复制方法进行模型选择的模型的典型学习性学效为$ell=1美元常规线性回归($ell_1美元-LinR) 。 对于在抛磁阶段的典型随机常规图表,我们获得了对美元1美元-LinR的典型样本复杂性的准确估计。 值得注意的是,尽管模型特性不正确, $_ ell_ 1美元-LinR是符合与美元1美元1美元($ell_1美元-LogR)相同的样本复杂性的典型选择。 模拟显示理论预测与实验结果($1美元-LogRR)之间相当的一致, 即使是用于与许多典型循环的图表, 其中美元是Ising模型变量的数量。 此外,我们提供了一种有效的方法来准确预测1美元-1美元-LinRRRRR的不依赖行为, 例如精确和回顾。 模拟显示理论预测和实验结果之间的相当一致, 即使是用于与许多常规循环的图表, 也支持我们学习的典型的模型。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
70+阅读 · 2021年12月8日
专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
14+阅读 · 2021年5月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
4+阅读 · 2021年7月1日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
4+阅读 · 2018年3月23日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员