As the first-line diagnostic imaging modality, radiography plays an essential role in the early detection of developmental dysplasia of the hip (DDH). Clinically, the diagnosis of DDH relies on manual measurements and subjective evaluation of different anatomical features from pelvic radiographs. This process is inefficient and error-prone and requires years of clinical experience. In this study, we propose a deep learning-based system that automatically detects 14 keypoints from a radiograph, measures three anatomical angles (center-edge, T\"onnis, and Sharp angles), and classifies DDH hips as grades I-IV based on the Crowe criteria. Moreover, a novel data-driven scoring system is proposed to quantitatively integrate the information from the three angles for DDH diagnosis. The proposed keypoint detection model achieved a mean (95% confidence interval [CI]) average precision of 0.807 (0.804-0.810). The mean (95% CI) intraclass correlation coefficients between the center-edge, Tonnis, and Sharp angles measured by the proposed model and the ground-truth were 0.957 (0.952-0.962), 0.947 (0.941-0.953), and 0.953 (0.947-0.960), respectively, which were significantly higher than those of experienced orthopedic surgeons (p<0.0001). In addition, the mean (95% CI) test diagnostic agreement (Cohen's kappa) obtained using the proposed scoring system was 0.84 (0.83-0.85), which was significantly higher than those obtained from diagnostic criteria for individual angle (0.76 [0.75-0.77]) and orthopedists (0.71 [0.63-0.79]). To the best of our knowledge, this is the first study for objective DDH diagnosis by leveraging deep learning keypoint detection and integrating different anatomical measurements, which can provide reliable and explainable support for clinical decision-making.


翻译:作为第一线诊断成像模式,放射法在早期检测臀部(DDDH)发育障碍(DDH)方面发挥着基本作用。 在临床方面,DDH的诊断依赖于对骨盆射线仪不同解剖特征的人工测量和主观评估。这个过程效率低,容易出错,需要多年的临床经验。在这个研究中,我们建议一个深层次的学习系统,从射线中自动检测14个关键点,测量3个解剖角度(中央-前沿,T\'onnis和尖锐角度),并根据Crowe标准将DDDDH的臀部归类为I-IV级。此外,一个全新的数据驱动评分系统,从三个角度对DDDDH的诊断特征进行定量整合。 拟议的关键点检测模型平均精确度(95%的置信隔间间,0.804-0810-0.10101010 10 ),这个系统(中央-直径,Tonnis,以及由拟议模型和地面-直径(0.9-直径)的直径(0.95-直径) 或直径(直径)。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员