The trend towards larger wind turbines and remote locations of wind farms fuels the demand for automated condition monitoring strategies that can reduce the operating cost and avoid unplanned downtime. Normal behaviour modelling has been introduced to detect anomalous deviations from normal operation based on the turbine's SCADA data. A growing number of machine learning models of the normal behaviour of turbine subsystems are being developed by wind farm managers to this end. However, these models need to be kept track of, be maintained and require frequent updates. This research explores multi-target models as a new approach to capturing a wind turbine's normal behaviour. We present an overview of multi-target regression methods, motivate their application and benefits in wind turbine condition monitoring, and assess their performance in a wind farm case study. We find that multi-target models are advantageous in comparison to single-target modelling in that they can reduce the cost and effort of practical condition monitoring without compromising on the accuracy. We also outline some areas of future research.


翻译:风力发电机和风力农场偏远地点的趋势刺激了对自动状况监测战略的需求,这种战略可以降低运营成本,避免意外停机时间。根据涡轮机的SCADA数据,采用了正常行为模型来检测与正常运行异常的偏差。风力发电机经理正在为此开发越来越多的涡轮子正常行为的机器学习模型。然而,这些模型需要不断跟踪、保持和经常更新。这项研究探索多目标模型,作为捕捉风力涡轮机正常行为的一种新方法。我们概述了多目标回归方法,在风力涡轮机状况监测中鼓励应用这些方法并从中受益,并在风力发电机状况案例研究中评估这些方法的性能。我们发现,多目标模型与单一目标模型相比是有利的,因为它们可以在不影响准确性的情况下降低实际状况监测的成本和努力。我们还概述了未来研究的一些领域。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年5月25日
q-Space Novelty Detection with Variational Autoencoders
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员