While constructing polar codes for successive-cancellation decoding can be implemented efficiently by sorting the bit-channels, finding optimal polar codes for cyclic-redundancy-check-aided successive-cancellation list (CA-SCL) decoding in an efficient and scalable manner still awaits investigation. This paper first maps a polar code to a unique heterogeneous graph called the polar-code-construction message-passing (PCCMP) graph. Next, a heterogeneous graph-neural-network-based iterative message-passing (IMP) algorithm is proposed which aims to find a PCCMP graph that corresponds to the polar code with minimum frame error rate under CA-SCL decoding. This new IMP algorithm's major advantage lies in its scalability power. That is, the model complexity is independent of the blocklength and code rate, and a trained IMP model over a short polar code can be readily applied to a long polar code's construction. Numerical experiments show that IMP-based polar-code constructions outperform classical constructions under CA-SCL decoding. In addition, when an IMP model trained on a length-128 polar code directly applies to the construction of polar codes with different code rates and blocklengths, simulations show that these polar code constructions deliver comparable performance to the 5G polar codes.
翻译:在为连续取消代码解码建立极地代码的同时,可以通过分拣比特通道来高效地实施。 找到最佳极地代码, 以高效和可缩放的方式进行循环冗余检查的连续取消列表( CA- SCL) 的解码, 但仍有待调查。 本文首先将极地代码映射成一个独特的多元图形, 称为极地代码- 开通信息通路图( PCCMP) 。 下一步, 提议了一个基于多异图形- 神经- 网络的迭代信息传输( IMP) 算法, 目的是找到一个符合极地代码、 CA- SCL 解码下最小框架错误率的PCCMP 图形。 这个新的IMP 算法的主要优势在于其可缩放能力。 这就是, 模型的复杂性独立于块长和代码, 一个经过训练的短极地代码IMP模型可以轻易适用于长极地代码的构造。 数字实验显示, IMP 极地码建筑模型比CA- SCL 解码的经典建筑模型。 此外, 将这些极地代码直接应用了极地极地规则。