Hamiltonian Monte Carlo (HMC) is a popular sampling method in Bayesian inference. Recently, Heng & Jacob (2019) studied Metropolis HMC with couplings for unbiased Monte Carlo estimation, establishing a generic parallelizable scheme for HMC. However, in practice a different HMC method, multinomial HMC, is considered as the go-to method, e.g. as part of the no-U-turn sampler. In multinomial HMC, proposed states are not limited to end-points as in Metropolis HMC; instead points along the entire trajectory can be proposed. In this paper, we establish couplings for multinomial HMC, based on optimal transport for multinomial sampling in its transition. We prove an upper bound for the meeting time - the time it takes for the coupled chains to meet - based on the notion of local contractivity. We evaluate our methods using three targets: 1,000 dimensional Gaussians, logistic regression and log-Gaussian Cox point processes. Compared to Heng & Jacob (2019), coupled multinomial HMC generally attains a smaller meeting time, and is more robust to choices of step sizes and trajectory lengths, which allows re-use of existing adaptation methods for HMC. These improvements together paves the way for a wider and more practical use of coupled HMC methods.


翻译:汉密尔顿·蒙特卡洛(HMC)是巴伊西亚州测谎中流行的采样方法。最近,亨加雅各布(2019年)研究大都市HMC,同时研究无偏见的蒙特卡洛估算,为HMC建立一个通用的平行计划。然而,在实践中,不同的HMC方法,即多名HMC,被认为是“向上”方法,例如作为无Uturn取样器的一部分。在多名HMC中,提议的国家不限于大都市HMC的终点;相反,可以提出整个轨迹的各个点。在本文件中,我们根据过渡期间多名抽样的最佳运输方法,为多名HMC建立了多名HMC的结合。我们证明,在会议时间上,即多名HMC的多名制式方法----即作为无Uturt取样器的一部分,被认为是“向上进”的方法。我们用三种目标评估了我们的方法:1,000个维计、物流回归和log-Gaussian Cox点进程。与Hng & Jaco(2019年)相比,我们为多名的多名HMC的跨式选择是更牢固的一步,通常的HMC方法,使HMC的走向更接近于更牢固的走向更小的走向。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
3+阅读 · 2019年10月31日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
相关资讯
Top
微信扫码咨询专知VIP会员