Recent studies show a close connection between neural networks (NN) and kernel methods. However, most of these analyses (e.g., NTK) focus on the influence of (infinite) width instead of the depth of NN models. There remains a gap between theory and practical network designs that benefit from the depth. This paper first proposes a novel kernel family named Neural Optimization Kernel (NOK). Our kernel is defined as the inner product between two $T$-step updated functionals in RKHS w.r.t. a regularized optimization problem. Theoretically, we proved the monotonic descent property of our update rule for both convex and non-convex problems, and a $O(1/T)$ convergence rate of our updates for convex problems. Moreover, we propose a data-dependent structured approximation of our NOK, which builds the connection between training deep NNs and kernel methods associated with NOK. The resultant computational graph is a ResNet-type finite width NN. Our structured approximation preserved the monotonic descent property and $O(1/T)$ convergence rate. Namely, a $T$-layer NN performs $T$-step monotonic descent updates. Notably, we show our $T$-layered structured NN with ReLU maintains a $O(1/T)$ convergence rate w.r.t. a convex regularized problem, which explains the success of ReLU on training deep NN from a NN architecture optimization perspective. For the unsupervised learning and the shared parameter case, we show the equivalence of training structured NN with GD and performing functional gradient descent in RKHS associated with a fixed (data-dependent) NOK at an infinity-width regime. For finite NOKs, we prove generalization bounds. Remarkably, we show that overparameterized deep NN (NOK) can increase the expressive power to reduce empirical risk and reduce the generalization bound at the same time. Extensive experiments verify the robustness of our structured NOK blocks.


翻译:最近的研究表明神经网络( NN) 和内核方法之间有着密切的联系。 然而, 这些分析( 例如 NTK ) 大多侧重于( 无限) 宽度的影响, 而不是 NN 模型的深度。 理论与实际网络设计之间仍然存在差距, 从而受益于深度 。 此论文首先提出一个新的内核家族名为 Neal Optimization Kernel( NOK ) 。 我们的内核定义为 RHS w.r. t. 中两个步骤更新的内核功能之间的内产。 由此产生的内核计算图是一个常规化的优化问题。 从理论上, 我们的更新规则对于 convex 和非convex 问题的影响, 以及我们对于 convex 问题更新的 $( 1/ T) 的内核内核内核内核内核内核内核内核内核内核内核内化的内核内核内核内核内核内化。 我们的内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内 内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内

1
下载
关闭预览

相关内容

最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
1+阅读 · 2021年8月24日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
13+阅读 · 2021年5月25日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员