We introduce general tools for designing efficient private estimation algorithms, in the high-dimensional settings, whose statistical guarantees almost match those of the best known non-private algorithms. To illustrate our techniques, we consider two problems: recovery of stochastic block models and learning mixtures of spherical Gaussians. For the former, we present the first efficient $(\epsilon, \delta)$-differentially private algorithm for both weak recovery and exact recovery. Previously known algorithms achieving comparable guarantees required quasi-polynomial time. For the latter, we design an $(\epsilon, \delta)$-differentially private algorithm that recovers the centers of the $k$-mixture when the minimum separation is at least $ O(k^{1/t}\sqrt{t})$. For all choices of $t$, this algorithm requires sample complexity $n\geq k^{O(1)}d^{O(t)}$ and time complexity $(nd)^{O(t)}$. Prior work required minimum separation at least $O(\sqrt{k})$ as well as an explicit upper bound on the Euclidean norm of the centers.
翻译:在高维环境下,我们引入了设计高效的私人估算算法的一般工具,其统计保障几乎与最著名的非私人算法的保证相匹配。为了说明我们的技术,我们考虑了两个问题:回收随机区块模型和球形高斯人学习混合物。对于前者,我们提出了第一个高效的美元( ⁇ 1,\delta)美元-差别私人算法,用于薄弱的恢复和精确恢复。以前已知的算法实现了所需的准极化时间的类似保证。对于后者,我们设计了一种美元( ⁇,\delta)美元-差别化的私人算法,在最小分离至少为O(k)1/t ⁇ {sqrt{t}美元时恢复美元-象素中心。对于所有美元的选择,这种算法要求样本复杂度为$n\geqq k ⁇ (1)}d ⁇ O(t)美元和时间复杂性$(n) ⁇ O(t)美元。对于后者,前一项工作要求至少至少以O(sqrt){crk{cru}作为明确的中心的最低分离中心。