Continuum robotic manipulators are increasingly adopted in minimal invasive surgery. However, their nonlinear behavior is challenging to model accurately, especially when subject to external interaction, potentially leading to poor control performance. In this letter, we investigate the feasibility of adopting a model-free multiagent reinforcement learning (RL), namely multiagent deep Q network (MADQN), to control a 2-degree of freedom (DoF) cable-driven continuum surgical manipulator. The control of the robot is formulated as a one-DoF, one agent problem in the MADQN framework to improve the learning efficiency. Combined with a shielding scheme that enables dynamic variation of the action set boundary, MADQN leads to efficient and importantly safer control of the robot. Shielded MADQN enabled the robot to perform point and trajectory tracking with submillimeter root mean square errors under external loads, soft obstacles, and rigid collision, which are common interaction scenarios encountered by surgical manipulators. The controller was further proven to be effective in a miniature continuum robot with high structural nonlinearitiy, achieving trajectory tracking with submillimeter accuracy under external payload.
翻译:连续机器人操纵器越来越多地在最小侵入性手术中被采用。然而,它们的非线性行为对精确模型进行精确模型化具有挑战性,特别是当它们受到外部互动的影响,可能导致控制性性能不佳。在本信中,我们调查采用无模型多剂强化学习(RL)的可行性,即多剂深Q网络(MADQN),以控制2度自由(DoF)有线驱动的连续连续操作外科手术操纵器。机器人的控制被设计成一个“一斗”,这是MADQN框架中提高学习效率的一个代理问题。结合一种能够动态改变行动定界线的屏蔽计划,MADQN导致对机器人的高效和重要的安全控制。在外负载、软障碍和硬碰撞等常见的互动情景下,MADADQN使机器人能够进行点和轨迹追踪,这是手术操纵器遇到的常见互动情景。控制器被进一步证明在具有高结构非线性的非线性微型微型连续机器人中有效,在外部载荷下以亚模精确度进行轨迹跟踪。