The Nystr\"om method is a popular choice for finding a low-rank approximation to a symmetric positive semi-definite matrix. The method can fail when applied to symmetric indefinite matrices, for which the error can be unboundedly large. In this work, we first identify the main challenges in finding a Nystr\"om approximation to symmetric indefinite matrices. We then prove the existence of a variant that overcomes the instability, and establish relative-error nuclear norm bounds of the resulting approximation that hold when the singular values decay rapidly. The analysis naturally leads to a practical algorithm, whose robustness is illustrated with experiments.
翻译:Nystr\'om 方法是一种常见的选择, 用于寻找对称正对正半确定矩阵的低位近似值。 当该方法被应用到对称的无限期矩阵时可能会失败, 而对于这些矩阵,误差可能是无限的。 在这项工作中, 我们首先确定在找到 Nystr\'om 近近似值到对称的无限期矩阵方面的主要挑战。 然后我们证明存在一种克服不稳定性的变量, 并且建立在单值迅速衰减时所形成的相对- 高度的近近似核规范界限。 分析自然导致一种实用的算法, 它的强性可以用实验来说明。