The occupancy grid map is a critical component of autonomous positioning and navigation in the mobile robotic system, as many other systems' performance depends heavily on it. To guarantee the quality of the occupancy grid maps, researchers previously had to perform tedious manual recognition for a long time. This work focuses on automatic abnormal occupancy grid map recognition using the residual neural networks and a novel attention mechanism module. We propose an effective channel and spatial Residual SE(csRSE) attention module, which contains a residual block for producing hierarchical features, followed by both channel SE (cSE) block and spatial SE (sSE) block for the sufficient information extraction along the channel and spatial pathways. To further summarize the occupancy grid map characteristics and experiment with our csRSE attention modules, we constructed a dataset called occupancy grid map dataset (OGMD) for our experiments. On this OGMD test dataset, we tested few variants of our proposed structure and compared them with other attention mechanisms. Our experimental results show that the proposed attention network can infer the abnormal map with state-of-the-art (SOTA) accuracy of 96.23% for abnormal occupancy grid map recognition.
翻译:占用网格图是移动机器人系统自主定位和导航的一个关键组成部分,因为许多其他系统的性能都严重依赖它。为了保证占用网格图的质量,研究人员以前不得不长期进行无聊的人工识别。这项工作的重点是利用残余神经网络和一个新的关注机制模块进行自动异常占用网格图识别。我们提出了一个有效的频道和空间残留SE(csRSE)关注模块,其中包含产生等级特征的残余块,随后是SE(cSE)区块和SE(sSE)区块,以便沿着通道和空间通道充分提取信息。为了进一步归纳占用网图特征并试验我们的CsRSE关注模块,我们为实验设计了一个称为占用网格图数据集(OGMD)的数据集。在这个OGMD测试数据集中,我们测试了我们拟议结构的少数变体并将其与其他关注机制进行比较。我们的实验结果表明,拟议的注意网络可以推断出96.23%的异常图的异常准确度,用于异常占用网格图的识别。