We introduce CausalMamba, a scalable framework that addresses fundamental limitations in fMRI-based causal inference: the ill-posed nature of inferring neural causality from hemodynamically distorted BOLD signals and the computational intractability of existing methods like Dynamic Causal Modeling (DCM). Our approach decomposes this complex inverse problem into two tractable stages: BOLD deconvolution to recover latent neural activity, followed by causal graph inference using a novel Conditional Mamba architecture. On simulated data, CausalMamba achieves 37% higher accuracy than DCM. Critically, when applied to real task fMRI data, our method recovers well-established neural pathways with 88% fidelity, whereas conventional approaches fail to identify these canonical circuits in over 99% of subjects. Furthermore, our network analysis of working memory data reveals that the brain strategically shifts its primary causal hub-recruiting executive or salience networks depending on the stimulus-a sophisticated reconfiguration that remains undetected by traditional methods. This work provides neuroscientists with a practical tool for large-scale causal inference that captures both fundamental circuit motifs and flexible network dynamics underlying cognitive function.


翻译:我们提出了CausalMamba,一个可扩展的框架,旨在解决基于功能磁共振成像(fMRI)的因果推断中的两个根本性局限:从血流动力学扭曲的血氧水平依赖(BOLD)信号推断神经因果关系的病态性,以及现有方法(如动态因果建模,DCM)的计算不可行性。我们的方法将这个复杂的逆问题分解为两个可处理的阶段:首先进行BOLD信号反卷积以恢复潜在的神经活动,随后使用一种新颖的条件Mamba架构进行因果图推断。在模拟数据上,CausalMamba的准确率比DCM高出37%。至关重要的是,当应用于真实的任务态fMRI数据时,我们的方法能以88%的保真度恢复公认的神经通路,而传统方法在超过99%的受试者中无法识别这些典型环路。此外,我们对工作记忆数据的网络分析表明,大脑会根据刺激类型策略性地转换其主要因果枢纽——招募执行网络或凸显网络,这是一种传统方法未能检测到的复杂网络重组。这项工作为神经科学家提供了一个实用工具,用于进行大规模因果推断,既能捕捉认知功能背后的基本环路模式,也能揭示其灵活的网络动态。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员