Spurred by tremendous success in pattern matching and prediction tasks, researchers increasingly resort to machine learning to aid original scientific discovery. Given large amounts of observational data about a system, can we uncover the rules that govern its evolution? Solving this task holds the great promise of fully understanding the causal interactions and being able to make reliable predictions about the system's behavior under interventions. We take a step towards answering this question for time-series data generated from systems of ordinary differential equations (ODEs). While the governing ODEs might not be identifiable from data alone, we show that combining simple regularization schemes with flexible neural ODEs can robustly recover the dynamics and causal structures from time-series data. Our results on a variety of (non)-linear first and second order systems as well as real data validate our method. We conclude by showing that we can also make accurate predictions under interventions on variables or the system itself.
翻译:在模式匹配和预测任务的巨大成功激励下,研究人员越来越多地利用机器学习来帮助原始科学发现。根据大量关于一个系统的观测数据,我们能否发现指导其演变的规则?解决这一任务大有希望充分了解因果相互作用,并能够对系统在干预下的行为作出可靠的预测。我们迈出了一步,回答了从普通差异方程系统(ODE)产生的时间序列数据的问题。尽管治理的ODE可能无法单独从数据中识别,但我们表明,将简单的正规化计划与灵活的神经代码相结合,能够从时间序列数据中强有力地恢复动态和因果结构。我们关于各种(非)线性一级和二级系统以及真实数据的结果证实了我们的方法。我们的结论是,我们也可以在变量或系统本身的干预下作出准确的预测。