Using ideas from Generalized Degrees of Freedom (GDoF) analyses and extremal network theory, this work studies the extremal gain of optimal power control over binary (on/off) power control, especially in large interference networks, in search of new theoretical insights. Whereas numerical studies have already established that in most practical settings binary power control is close to optimal, the extremal analysis shows not only that there exist settings where the gain from optimal power control can be quite significant, but also bounds the extremal values of such gains from a GDoF perspective. As its main contribution, this work explicitly characterizes the extremal GDoF gain of optimal over binary power control as $\Theta\left(\sqrt{K}\right)$ for all $K$. In particular, the extremal gain is bounded between $\lfloor \sqrt{K}\rfloor$ and $2.5\sqrt{K}$ for every $K$. For $K=2,3,4,5,6$ users, the precise extremal gain is found to be $1, 3/2, 2, 9/4$ and $41/16$, respectively. Networks shown to achieve the extremal gain may be interpreted as multi-tier heterogeneous networks. It is worthwhile to note that because of their focus on asymptotic analysis, the sharp characterizations of extremal gains are valuable primarily from a theoretical perspective, and not as contradictions to the conventional wisdom that binary power control is generally close to optimal in practical, non-asymptotic settings.


翻译:本文使用一般化自由度( GDoF) 分析的理念和极端网络理论, 研究对二进制( 上/ 下) 电源控制的最佳电源控制的极端增益, 特别是在大型干涉网络中, 以寻找新的理论见解。 虽然数字研究已经确定, 在大多数实际环境中, 二进制电源控制接近最佳, 极差分析不仅显示存在从最佳电源控制获得相当可观的收益的设置, 而且还将这种收益的极端值从 GDoF 角度加以约束。 作为其主要贡献, 这项工作明确将二进制电控制的最佳电源控制的极端增益描述为$\ Theta\ left(\ sqrt{ K ⁇ right) $( ) 用于所有KK$。 特别是, 极速性电源控制在每1K$\ droproup ral ral ral- conversal conflical Processional Processional as the real- cal- cal legress requiressalalal lectional lections mal as messal as mess roal painal pal pal leas messal pal pal pal pal press messal pal pal pal press proal press mal pres lection.

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月26日
Arxiv
0+阅读 · 2022年6月26日
Arxiv
0+阅读 · 2022年6月23日
Arxiv
0+阅读 · 2022年6月16日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员