项目名称: 分子束外延生长重费米子超结构薄膜的原位角分辨光电子能谱研究

项目编号: No.11274332

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 沈大伟

作者单位: 中国科学院上海微系统与信息技术研究所

项目金额: 92万元

中文摘要: 最近在重费米子超结构薄膜中发现的由空间维度改变所导致的量子临界现象具有十分重要科学研究和可能的应用价值。但对于进一步从电子结构等微观机理层面理解这类强关联电子体系中的复杂量子相变问题在实验上还面临较大的挑战。这一方面受制于高质量的人工超结构薄膜样品的获得,更主要的还是缺乏必要的直接研究此类低维材料电子结构的实验手段。本项目拟发挥MBE/ARPES集成实验系统的原位生长和测量的独特优势,通过对(CeIn3)m/(LaIn3)n这一典型的重费米子超结构薄膜的设计与生长,从空间维度上调控其中量子相变发生,并同时原位考察相应的电子结构精细变化。通过这种方法,可以直观地辨明其中量子相变物理根源等相关最基本科学问题,从而可以为推动重费米子人工超结构薄膜中由空间维度效应导致的量子临界现象的应用奠定关键科学技术基础。

中文关键词: 角分辨光电子能谱;分子束外延;重费米子;电子结构;

英文摘要: The recent discovery of the quantum criticality controlled by the dimensionality tuning in the heary fermion superlattics has excited great interest due to its significiance in condensed matter physics and the potential application. However, there are great challenges to further understand the basis of such complex quantum phase transition experimentally. On one hand, the research is limited by the synthesis of the high quality artifical superlattice; On the other hand, there is particularly lack of a tool to directly probe the electronic structure of this low dimensional artifical material. We propose to grow epitaxically a series of (CeIn3)m/(LaIn3)n superlattices with different (m, n), in that the quantum criticality can be controlled by tuning the thickness of CeIn3. Taking advantage of our unique integrated MBE/ARPES system, we can in situ investigate the detailed change in the k-dependent electronic structure upon the quantum phase transition. In this way, we can explicitly distinguish the physical origin of this quantum phase transition tuned by dimensionality in heavy fermion, and thus probaly prepare the ground for its potentail application in future.

英文关键词: Angle-resolved photoemission spectroscopy;Molecular beam epitaxy;Heavy fermion;Electronic structure;

成为VIP会员查看完整内容
0

相关内容

神经网络的基础数学
专知会员服务
201+阅读 · 2022年1月23日
专知会员服务
42+阅读 · 2021年9月7日
【干货书】从初等问题看数学的本质,400页pdf
专知会员服务
56+阅读 · 2021年5月28日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
95+阅读 · 2021年3月25日
专知会员服务
21+阅读 · 2020年9月14日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
46+阅读 · 2021年10月4日
Anomalous Instance Detection in Deep Learning: A Survey
小贴士
相关VIP内容
神经网络的基础数学
专知会员服务
201+阅读 · 2022年1月23日
专知会员服务
42+阅读 · 2021年9月7日
【干货书】从初等问题看数学的本质,400页pdf
专知会员服务
56+阅读 · 2021年5月28日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
95+阅读 · 2021年3月25日
专知会员服务
21+阅读 · 2020年9月14日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员