The stringent timing and reliability requirements in mission-critical applications require a detailed statistical characterization of the latency. Teleoperation is a representative use case, in which a human operator (HO) remotely controls a robot by exchanging command and feedback signals. We present a framework to analyze the latency of a closed-loop teleoperation system consisting of three entities: HO, robot located in remote environment, and a Base Station (BS) with Mobile edge Computing (MEC) capabilities. A model of each component of the system is used to analyze the closed-loop latency and decide upon the optimal compression strategy. The closed-form expression of the distribution of the closed-loop latency is difficult to estimate, such that suitable upper and lower bounds are obtained. We formulate a non-convex optimization problem to minimize the closed-loop latency. Using the obtained upper and lower bound on the closed-loop latency, a computationally efficient procedure to optimize the closed-loop latency is presented. The simulation results reveal that compression of sensing data is not always beneficial, while system design based on average performance leads to under-provisioning and may cause performance degradation. The applicability of the proposed analysis is much wider than teleoperation, for systems whose latency budget consists of many components.


翻译:对任务关键应用的严格时间和可靠性要求对延迟进行详细的统计定性。远程操作是一个有代表性的使用案例,其中人类操作者(HO)通过交换指令和反馈信号遥控控制机器人。我们提出了一个框架,用于分析由三个实体组成的闭路远程操作系统的延迟性:HO、位于偏远环境中的机器人和具有移动边缘计算机(MEC)能力的基地站(BS),该系统每个组成部分的模型被用来分析闭路延迟度和决定最佳压缩战略。闭路延迟分布的封闭式表达方式很难估计,因此获得合适的上下界。我们提出了一个不连接优化问题,以尽量减少闭路延迟。利用封闭边缘计算机(MEC)的上限和下端绑定了封闭边缘电子计算机(BS)能力。介绍了一个计算高效程序,以优化闭路延迟拉长度。模拟结果显示,压缩遥感数据并非总有好处,而基于平均性能的系统设计则导致更大范围的操作性分析,因此,拟议的远程操作性分析可能造成预算的退化。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月30日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员