We present an alternative relatively easy way to understand and determine the zeros of a quintic whose Galois group is isomorphic to the group of rotational symmetries of a regular icosahedron. The extensive algebraic procedures of Klein in his famous \textit{Vorlesungen \"uber das Ikosaeder und die Aufl\"osung der Gleichungen vom f\"unften Grade} are here shortened via Heymann's theory of transformations. Also, we give a complete explanation of the so-called icosahedral equation and its solution in terms of Gaussian hypergeometric functions. As an innovative element, we construct this solution by using algebraic transformations of hypergeometric series. Within this framework, we develop a practical algorithm to compute the zeros of the quintic.
翻译:我们提出了一个相对容易的替代方法来理解和确定一个五角形的零点, Galois 群群的Galois 是正常象形体的交替对称组。 Klein 在其著名的 \ textit{Vorlesungen \\\"beber das Ikosaeder und die Aufl\"osung der Gleichungen vom f\ f'unften grade} 这里通过Heymann的变换理论来缩短。 另外, 我们用高山高地的超几何函数来全面解释所谓的海洋等式方程式及其解决方案。 作为创新元素, 我们通过超地球数序列的代数转换来构建这个解决方案。 在这个框架内, 我们开发一个实际的算法来计算五角值的零。