Calculating averages with respect to probability measures on submanifolds is often necessary in various application areas such as molecular dynamics, computational statistical mechanics and Bayesian statistics. In recent years, various numerical schemes have been proposed in the literature to study this problem based on appropriate reversible constrained stochastic dynamics. In this paper we present and analyse a non-reversible generalisation of the projection-based scheme developed by one of the authors [ESAIM: M2AN, 54 (2020), pp. 391-430]. This scheme consists of two steps - starting from a state on the submanifold, we first update the state using a non-reversible stochastic differential equation which takes the state away from the submanifold, and in the second step we project the state back onto the manifold using the long-time limit of an ordinary differential equation. We prove the consistency of this numerical scheme and provide quantitative error estimates for estimators based on finite-time running averages. Furthermore, we present theoretical analysis which shows that this scheme outperforms its reversible counterpart in terms of asymptotic variance. We demonstrate our findings on an illustrative test example.


翻译:在分子动态、计算统计力学和巴伊西亚统计等不同应用领域,往往需要计算关于子层概率测量的平均值。近年来,文献中提出了各种数字计划,以根据适当的可逆限制随机动态研究这一问题。在本文中,我们介绍和分析一个作者制定的预测性计划[ESAIM:M2AN,54(202020),pp.391-430]。这个计划由两步组成——从分子动态、计算统计力和巴伊西亚统计学统计学的状态开始,我们首先用不可逆的随机差异方程式更新状态,该方程式将状态从亚平面上移开,在第二步中,我们用普通差异方程式的长时限来预测状态。我们证明这个数字方案的一致性,并根据有限时间运行平均数为估计者提供定量误差估计数。此外,我们提出理论分析,表明这个计划在不可逆对应方程式中,在不可逆差异方面,比其可逆的对应方程式高。我们展示了我们关于典型测试的结果。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员