User Satisfaction Estimation (USE) is an important yet challenging task in goal-oriented conversational systems. Whether the user is satisfied with the system largely depends on the fulfillment of the user's needs, which can be implicitly reflected by users' dialogue acts. However, existing studies often neglect the sequential transitions of dialogue act or rely heavily on annotated dialogue act labels when utilizing dialogue acts to facilitate USE. In this paper, we propose a novel framework, namely USDA, to incorporate the sequential dynamics of dialogue acts for predicting user satisfaction, by jointly learning User Satisfaction Estimation and Dialogue Act Recognition tasks. In specific, we first employ a Hierarchical Transformer to encode the whole dialogue context, with two task-adaptive pre-training strategies to be a second-phase in-domain pre-training for enhancing the dialogue modeling ability. In terms of the availability of dialogue act labels, we further develop two variants of USDA to capture the dialogue act information in either supervised or unsupervised manners. Finally, USDA leverages the sequential transitions of both content and act features in the dialogue to predict the user satisfaction. Experimental results on four benchmark goal-oriented dialogue datasets across different applications show that the proposed method substantially and consistently outperforms existing methods on USE, and validate the important role of dialogue act sequences in USE.
翻译:用户满意度估计(USE)是面向目标的谈话系统中一项重要但富有挑战性的任务。用户是否对系统满意在很大程度上取决于满足用户的需要,而用户的对话行为可以隐含地反映这种需要。然而,现有的研究往往忽视对话的顺序过渡,或者在利用对话行为促进用户满意度时,严重依赖附加说明的对话行为标签。在本文件中,我们提出了一个新的框架,即USDA,通过联合学习用户满意度估计和对话法认可任务,纳入对话行为对用户满意度预测的顺序动态。具体地说,我们首先使用一个等级变换器来编码整个对话环境,其中两项任务适应性培训前战略是加强对话示范能力的第二个阶段,主要培训前阶段。关于对话行为标签的可用性,我们进一步开发了两个变式,即USDA,以监督或未监督的方式获取对话行为信息。最后,USA利用了内容和行为特性的顺序转换,在对话中采用两种特征,以预测整个对话背景,即两项任务适应性前培训战略,作为加强对话能力的第二阶段。关于现有对话方法的实验性结果,显示现有方法中以持续地衡量现有方法。