Concrete is the standard construction material for buildings, bridges, and roads. As safety plays a central role in the design, monitoring, and maintenance of such constructions, it is important to understand the cracking behavior of concrete. Computed tomography captures the microstructure of building materials and allows to study crack initiation and propagation. Manual segmentation of crack surfaces in large 3d images is not feasible. In this paper, automatic crack segmentation methods for 3d images are reviewed and compared. Classical image processing methods (edge detection filters, template matching, minimal path and region growing algorithms) and learning methods (convolutional neural networks, random forests) are considered and tested on semi-synthetic 3d images. Their performance strongly depends on parameter selection which should be adapted to the grayvalue distribution of the images and the geometric properties of the concrete. In general, the learning methods perform best, in particular for thin cracks and low grayvalue contrast.
翻译:混凝土是建筑、桥梁和道路的标准建筑材料。由于安全在设计、监测和维护这些建筑方面发挥着核心作用,因此了解混凝土的裂缝行为十分重要。计算成的断层摄影能够捕捉建筑材料的微结构,并能够研究裂缝的启动和传播。大型三维图像中的裂缝表面手工分割不可行。在本文件中,对三维图像的自动裂缝分解方法进行审查和比较。典型的图像处理方法(尖端探测过滤器、模板匹配、最低路径和地区生长算法)和学习方法(横向神经网络、随机森林)和学习方法(半合成三维图像)得到考虑和测试。其性能在很大程度上取决于参数选择,而参数选择应该适应图像的灰色分布和混凝土的几何特性。一般来说,学习方法效果最好,特别是对于薄裂缝和低灰度对比而言。