Inductive transfer learning has had a big impact on computer vision and NLP domains but has not been used in the area of recommender systems. Even though there has been a large body of research on generating recommendations based on modeling user-item interaction sequences, few of them attempt to represent and transfer these models for serving downstream tasks where only limited data exists. In this paper, we delve on the task of effectively learning a single user representation that can be applied to a diversity of tasks, from cross-domain recommendations to user profile predictions. Fine-tuning a large pre-trained network and adapting it to downstream tasks is an effective way to solve such tasks. However, fine-tuning is parameter inefficient considering that an entire model needs to be re-trained for every new task. To overcome this issue, we develop a parameter efficient transfer learning architecture, termed as PeterRec, which can be configured on-the-fly to various downstream tasks. Specifically, PeterRec allows the pre-trained parameters to remain unaltered during fine-tuning by injecting a series of re-learned neural networks, which are small but as expressive as learning the entire network. We perform extensive experimental ablation to show the effectiveness of the learned user representation in five downstream tasks. Moreover, we show that PeterRec performs efficient transfer learning in multiple domains, where it achieves comparable or sometimes better performance relative to fine-tuning the entire model parameters.


翻译:引导性传输学习对计算机视野和NLP领域产生了重大影响,但在建议系统领域尚未使用。尽管在根据模拟用户-项目互动序列生成建议方面进行了大量研究,但很少有人试图在只有有限数据的情况下代表并转让这些模型,用于下游任务。在本文件中,我们探讨了有效学习单一用户代表的任务,这些代表可适用于从跨域建议到用户配置预测等多种任务。精细调整大型预先培训的网络并将其适应下游任务是解决这类任务的有效方法。然而,微调是低效的参数,因为整个模型需要为每一项新任务再培训。为了克服这一问题,我们开发了一个称为PeterRec的参数高效转移学习结构,可以随风而为各种下游任务配置。具体地说,PeterRec允许预先培训的参数在微调期间保持未变的状态,通过注入一系列再培训的神经网络,这些网络虽然小,但作为直观的相对而言,是低效的。为了克服每一个新任务,微的模型是无效的。为了克服这个问题,我们开发一个参数,可以进行广泛的实验性高效的转移,我们学习了多个网络。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Next Item Recommendation with Self-Attention
Arxiv
5+阅读 · 2018年8月25日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
9+阅读 · 2018年3月23日
Arxiv
8+阅读 · 2018年2月23日
Arxiv
12+阅读 · 2018年1月28日
Arxiv
5+阅读 · 2017年11月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Next Item Recommendation with Self-Attention
Arxiv
5+阅读 · 2018年8月25日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
9+阅读 · 2018年3月23日
Arxiv
8+阅读 · 2018年2月23日
Arxiv
12+阅读 · 2018年1月28日
Arxiv
5+阅读 · 2017年11月13日
Top
微信扫码咨询专知VIP会员