We propose a sequential design method aiming at the estimation of an extreme quantile based on a sample of dichotomic data corresponding to peaks over a given threshold. This study is motivated by an industrial challenge in material reliability and consists in estimating a failure quantile from trials whose outcomes are reduced to indicators of whether the specimen have failed at the tested stress levels. The solution proposed is a sequential design making use of a splitting approach, decomposing the target probability level into a product of probabilities of conditional events of higher order. The method consists in gradually targeting the tail of the distribution and sampling under truncated distributions. The model is GEV or Weibull, and sequential estimation of its parameters involves an improved maximum likelihood procedure for binary data, due to the large uncertainty associated with such a restricted information.


翻译:我们建议了一种顺序设计方法,旨在根据与某一阈值峰值相对应的二分位数数据样本来估计一个极端的四分位数。本研究的动机是物质可靠性方面的工业挑战,包括从试验中估算出一个失败的四分位数,试验的结果被减为标本是否在试验压力水平上失灵的指标。提议的解决办法是采用分解方法的顺序设计,将目标概率水平分解成条件性较高事件概率的产物。方法包括逐步针对分布和采样的尾部进行截断分布。模型是GEV或Weibull,其参数的顺序估计涉及改进二进制数据的最大可能性程序,因为这种限制信息具有很大的不确定性。

0
下载
关闭预览

相关内容

【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
16+阅读 · 2020年4月28日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Single-frame Regularization for Temporally Stable CNNs
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年5月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员