This paper studies causal inference in randomized experiments under network interference. Commonly used models of interference posit that treatments assigned to alters beyond a certain network distance from the ego have no effect on the ego's response. However, this assumption is violated in common models of social interactions. We propose a substantially weaker model of "approximate neighborhood interference" (ANI) under which treatments assigned to alters further from the ego have a smaller, but potentially nonzero, effect on the ego's response. We formally verify that ANI holds for well-known models of social interactions. Under ANI, restrictions on the network topology, and asymptotics under which the network size increases, we prove that standard inverse-probability weighting estimators consistently estimate useful exposure effects and are approximately normal. For inference, we consider a network HAC variance estimator. Under a finite population model, we show that the estimator is biased but that the bias can be interpreted as the variance of unit-level exposure effects. This generalizes Neyman's well-known result on conservative variance estimation to settings with interference.
翻译:本文研究在网络干扰下随机实验的因果关系推断。 常用的干扰模型假定用于改变超出某种网络距离与自我自我自我的治疗对自我反应没有影响。 但是,这种假设在共同的社会互动模式中被违反。 我们提出了一个“近邻干涉”的较弱模型(ANI),根据这种模型,分配用于进一步改变自我的治疗对自我反应的影响较小,但可能不为零。 我们正式核实ANI持有众所周知的社会互动模式。 根据ANI,对网络地形学的限制,以及网络规模增加的无症状,我们证明对估计者进行反概率加权的标准持续估计接触影响,而且大致是正常的。我们推测,我们考虑HAC差异估计者。在有限的人口模式下,我们表明估计者存在偏差,但这种偏差可以被解释为单位水平接触效应的差异。根据网络规模扩大的网络地形和无症状,我们证明测量者对干扰环境的保守差异估计结果是众所周知的。