We investigate the performance of the Deep Hedging framework under training paths beyond the (finite dimensional) Markovian setup. In particular we analyse the hedging performance of the original architecture under rough volatility models with view to existing theoretical results for those. Furthermore, we suggest parsimonious but suitable network architectures capable of capturing the non-Markoviantity of time-series. Secondly, we analyse the hedging behaviour in these models in terms of P\&L distributions and draw comparisons to jump diffusion models if the the rebalancing frequency is realistically small.
翻译:我们调查了在马科维设置(无限维度)以外的培训路径下的深层套位框架的绩效,特别是我们分析了原始结构在粗糙波动模型下的套期保值性能,以了解这些模型的现有理论结果。此外,我们建议了能够捕捉时间序列非马尔科维尼的偏颇但合适的网络结构。第二,我们从P ⁇ L分布的角度分析了这些模型中的套期保值行为,并进行了比较,以在重新平衡的频率实际很小的情况下跳跃扩散模型。