This article presents a filter for state-space models based on Bellman's dynamic programming principle applied to the mode estimator. The proposed Bellman filter (BF) generalises the Kalman filter (KF) including its extended and iterated versions, while remaining equally inexpensive computationally. The BF is also (unlike the KF) robust under heavy-tailed observation noise and applicable to a wider range of (nonlinear and non-Gaussian) models, involving e.g. count, intensity, duration, volatility and dependence. (Hyper)parameters are estimated by numerically maximising a BF-implied log-likelihood decomposition, which is an alternative to the classic prediction-error decomposition for linear Gaussian models. Simulation studies reveal that the BF performs on par with (or even outperforms) state-of-the-art importance-sampling techniques, while requiring a fraction of the computational cost, being straightforward to implement and offering full scalability to higher dimensional state spaces.


翻译:本文章根据Bellman的动态编程原则,为适用于模式估计器的状态空间模型提供了一个过滤器。 Bellman 过滤器(BF) 将 Kalman 过滤器(KF) 包括扩展版和迭代版进行概括,同时在计算上保持同样廉价。 BF (与KF 不同) 在重尾观测噪音下也很强大,适用于范围更广的(非线性和非Gausian ) 模型,包括计数、强度、持续期、挥发性和依赖性。 (Hyper) 参数是用数字最大化的 BF 隐含的日志相似分解法估算的,这是对线形高山模型的经典预测器分解法的一种替代。模拟研究显示, BF 与(或甚至超越) 状态重要抽样技术相当,同时需要计算成本的一小部分,可以直接实施,并且可以向更高维度的空间提供完全的缩略度。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
《强化学习》简介小册,24页pdf
专知会员服务
272+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年4月9日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
《强化学习》简介小册,24页pdf
专知会员服务
272+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员