In the field of security, multi-objective security games (MOSGs) allow defenders to simultaneously protect targets from multiple heterogeneous attackers. MOSGs aim to simultaneously maximize all the heterogeneous payoffs, e.g., life, money, and crime rate, without merging heterogeneous attackers. In real-world scenarios, the number of heterogeneous attackers and targets to be protected may exceed the capability of most existing state-of-the-art methods, i.e., MOSGs are limited by the issue of scalability. To this end, this paper proposes a general framework called SDES based on many-objective evolutionary search to scale up MOSGs to large-scale targets and heterogeneous attackers. SDES consists of four consecutive key components, i.e., discretization, optimization, restoration and evaluation, and refinement. Specifically, SDES first discretizes the originally high-dimensional continuous solution space to the low-dimensional discrete one by the maximal indifference property in game theory. This property helps evolutionary algorithms (EAs) bypass the high-dimensional step function and ensure a well-convergent Pareto front. Then, a many-objective EA is used for optimization in the low-dimensional discrete solution space to obtain a well-spaced Pareto front. To evaluate solutions, SDES restores solutions back to the original space via bit-wisely optimizing a novel solution divergence. Finally, the refinement in SDES boosts the optimization performance with acceptable cost. Theoretically, we prove the optimization consistency and convergence of SDES. Experiment results show that SDES is the first linear-time MOSG algorithm for both large-scale attackers and targets. SDES is able to solve up to 20 attackers and 100 targets MOSG problems, while the state-of-the-art methods can only solve up to 8 attackers and 25 targets ones. Ablation study verifies the necessity of all components in SDES.
翻译:在安全领域,多目标安全博弈(MOSG)使得防御者能够同时保护来自多个异质攻击者的目标。MOSG旨在同时最大化所有异质收益,例如生命、金钱和犯罪率,而不合并异质攻击者。在现实场景中,异质攻击者和需要保护的目标数量可能超出大多数现有最先进的方法的能力范围,即MOSG受可扩展性问题的限制。为此,本文提出了一种称为 SDES 的通用框架,它基于多目标进化搜索,通过空间离散来将MOSG扩展到大规模目标和异质攻击者。SDES由四个连续的关键组成部分构成:离散化、优化、还原和评估以及细化。具体来说,SDES首先通过博弈论中的最大冷漠性质将原始的高维连续解空间划分为低维离散解空间。这种性质有助于进化算法(EAs)绕过高维阶跃函数,确保良好收敛的Pareto前沿。然后,利用多目标EA 在低维离散解空间中进行优化,以获得良好的 Pareto 前沿。 为了评估解决方案, SDES 通过按位优化新的解决方案差异来将解决方案恢复到原始空间。最后,通过可接受的成本进行的优化可以提高 SDES 的优化性能。从理论上讲,我们证明了 SDES 的优化一致性和收敛性。实验结果表明,SDES是第一个线性时间的MOSG算法,适用于大规模攻击者和目标。SDES能够解决多达20个攻击者和100个目标的MOSG问题,而现有的最先进方法只能解决多达8个攻击者和25个目标的问题。消融研究验证了SDES所有组成部分的必要性。