In our current society, the inter-connectivity of devices provides easy access for netizens to utilize cyberspace technology for illegal activities. The deep web platform is a consummative ecosystem shielded by boundaries of trust, information sharing, trade-off, and review systems. Domain knowledge is shared among experts in hacker's forums which contain indicators of compromise that can be explored for cyberthreat intelligence. Developing tools that can be deployed for threat detection is integral in securing digital communication in cyberspace. In this paper, we addressed the use of TOR relay nodes for anonymizing communications in deep web forums. We propose a novel approach for detecting cyberthreats using a deep learning algorithm Long Short-Term Memory (LSTM). The developed model outperformed the experimental results of other researchers in this problem domain with an accuracy of 94\% and precision of 90\%. Our model can be easily deployed by organizations in securing digital communications and detection of vulnerability exposure before cyberattack.
翻译:在我们目前的社会中,装置的互联互通为网民利用网络空间技术从事非法活动提供了方便的渠道。深层次的网络平台是一个由信任、信息共享、交换和审查系统界限所保护的完整生态系统。黑客论坛的专家分享了域知识,这些黑客论坛载有妥协指标,可以探索网络威胁情报。开发可用于威胁探测的工具对于确保网络空间的数字通信是不可或缺的。在本文中,我们讨论了在深层次的网络论坛上使用托盘中继节点进行匿名通信的问题。我们提出了利用深层学习算法长期记忆(LSTM)来探测网络威胁的新办法。开发的模型超过了这一问题领域其他研究人员的实验结果,精确度为94 ⁇ 和90 ⁇ 。我们的模型可以很容易地被各组织用于确保数字通信和在网络攻击前检测脆弱性暴露。