In feed-forward time-sensitive networks with Deficit Round-Robin (DRR), worst-case delay bounds were obtained by combining Total Flow Analysis (TFA) with the strict service curve characterization of DRR by Tabatabaee et al. The latter is the best-known single server analysis of DRR, however the former is dominated by Polynomial-size Linear Programming (PLP), which improves the TFA bounds and stability region, but was never applied to DRR networks. We first perform the necessary adaptation of PLP to DRR by computing burstiness bounds per-class and per-output aggregate and by enabling PLP to support non-convex service curves. Second, we extend the methodology to support networks with cyclic dependencies: This raises further dependency loops, as, on one hand, DRR strict service curves rely on traffic characteristics inside the network, which comes as output of the network analysis, and on the other hand, TFA or PLP requires prior knowledge of the DRR service curves. This can be solved by iterative methods, however PLP itself requires making cuts, which imposes other levels of iteration, and it is not clear how to combine them. We propose a generic method, called PLP-DRR, for combining all the iterations sequentially or in parallel. We show that the obtained bounds are always valid even before convergence; furthermore, at convergence, the bounds are the same regardless of how the iterations are combined. This provides the best-known worst-case bounds for time-sensitive networks, with general topology, with DRR. We apply the method to an industrial network, where we find significant improvements compared to the state-of-the-art.


翻译:在与 " 缺陷 " 圆环-路滨(DRR)连接到对时间敏感的网络中,最坏的延迟界限是通过将 " 总体流动分析 " (TFA)与Tabababeee等人对DRR的严格服务曲线定性相结合获得的。 后者是减少灾害风险最著名的单一服务器分析,然而,前者则由多面尺寸的线性编程(PLP)主导,它改进了TFA的界限和稳定性区域,但从未适用于DRR网络。我们首先通过计算每类和每产出总合的防爆界限并使PLPF支持DR的严格服务曲线来对DRR进行必要的调整。 其次,我们扩展了支持网络使用周期依赖性单一的单一服务器分析方法:一方面,DRR的严格的服务曲线取决于网络内部的交通特征,而另一方面,TFA或PLPLP要求事先对DR服务曲线进行最差的改进。 这一点可以通过迭接方法加以解决,然而,PLPLP本身则需要不断进行合并。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员