We introduce BusyBoard, a toy-inspired robot learning environment that leverages a diverse set of articulated objects and inter-object functional relations to provide rich visual feedback for robot interactions. Based on this environment, we introduce a learning framework, BusyBot, which allows an agent to jointly acquire three fundamental capabilities (interaction, reasoning, and planning) in an integrated and self-supervised manner. With the rich sensory feedback provided by BusyBoard, BusyBot first learns a policy to efficiently interact with the environment; then with data collected using the policy, BusyBot reasons the inter-object functional relations through a causal discovery network; and finally by combining the learned interaction policy and relation reasoning skill, the agent is able to perform goal-conditioned manipulation tasks. We evaluate BusyBot in both simulated and real-world environments, and validate its generalizability to unseen objects and relations. Video is available at https://youtu.be/EJ98xBJZ9ek.
翻译:我们引入了繁忙的机器人学习环境,即由玩具启发的机器人学习环境,它利用一系列不同的清晰对象和物体之间的功能关系,为机器人的互动提供丰富的视觉反馈。基于这种环境,我们引入了一个学习框架,即BusyBot,使代理人能够以综合和自我监督的方式共同获得三种基本能力(互动、推理和规划)。随着BusyBoard提供的丰富的感官反馈,繁忙的机器人首先学习了与环境有效互动的政策;然后利用该政策收集的数据,即繁忙的Bot为通过因果发现网络实现的跨点功能关系的原因;最后,通过将学习的相互作用政策和关系推理技能结合起来,该代理人能够完成有目标的操纵任务。我们在模拟和现实世界环境中对繁忙的机器人进行评估,并验证其对看不见的物体和关系的一般性。视频可在https://youtu.be/EJ98xJZ9ek上查阅。